Engblom, Markus
38  Ergebnisse:
Personensuche X
?
1

Changes in chlorine content over time – Probe deposit sampl..:

Balint, Roland ; Engblom, Markus ; Vainio, Emil...
Balint , R , Engblom , M , Vainio , E , Laurén , T , Niemi , J , Rautala , J , Saarinen , T , Hupa , M & Hupa , L 2023 , ' Changes in chlorine content over time – Probe deposit sampling in a Finnish kraft recovery boiler ' , Fuel , vol. 340 , 127599 . https://doi.org/10.1016/j.fuel.2023.127599.  , 2023
 
?
2

Rapid Quenching of Molten Salts as an Approach for the Coor..:

Lehmusto, Juho ; Kurley III, J. Matthew ; Cakmak, Ercan...
Lehmusto , J , Kurley III , J M , Cakmak , E , Keiser , J R , Lindberg , D , Engblom , M , Pint , B A & Raiman , S S 2023 , ' Rapid Quenching of Molten Salts as an Approach for the Coordination Characterization of Corrosion Products ' , Nuclear Science and Engineering . https://doi.org/10.1080/00295639.2023.2204175.  , 2023
 
?
3

Non-process elements in the recovery cycle of six Finnish k..:

Karlemo, Camilla ; Engblom, Markus ; Vakkilainen, Esa K
Karlemo , C , Engblom , M & Vakkilainen , E K 2023 , ' Non-process elements in the recovery cycle of six Finnish kraft pulp mills ' , Tappi Journal , vol. 22 , no. 3 , 184 . https://doi.org/10.32964/TJ22.3.184.  , 2023
 
?
5

Morphological and chemical differences within superheater d..:

Balint, Roland ; Engblom, Markus ; Niemi, Jonne...
Balint , R , Engblom , M , Niemi , J , Lindberg , D , Saarinen , T , Rautala , J , Hupa , M & Hupa , L 2023 , ' Morphological and chemical differences within superheater deposits from different locations of a black liquor recovery boiler ' , Energy , vol. 267 , 126576 ..  , 2023
 
?
7

Modeling of the axial distributions of volatile species in ..:

Ke, Xiwei ; Engblom, Markus ; Zhang, Man...
Ke , X , Engblom , M , Zhang , M , Santochi Pereira da Silva , P , Hupa , L , Lyu , J , Yang , H & Wei , G 2021 , ' Modeling of the axial distributions of volatile species in a circulating fluidized bed boiler ' , Chemical Engineering Science , vol. 233 , 116436 . https://doi.org/10.1016/j.ces.2021.116436.  , 2021
 
?
9

Kraft recovery boiler operation with splash plate and/or be..:

Raju, Viswamoorthy ; Engblom, Markus ; Rantala, Eetu..
Raju , V , Engblom , M , Rantala , E , Enestam , S & Mansikkasalo , J 2021 , ' Kraft recovery boiler operation with splash plate and/or beer can nozzles - a case study ' , Tappi Journal , vol. 20 , no. 10 , pp. 625-636 ..  , 2021
 
?
10

Superheater deposits and corrosion in temperature gradient ..:

Niemi, Jonne ; Engblom, Markus ; Laurén, Tor...
Niemi , J , Engblom , M , Laurén , T , Yrjas , P , Lehmusto , J , Hupa , M & Lindberg , D 2021 , ' Superheater deposits and corrosion in temperature gradient – Laboratory studies into effects of flue gas composition, initial deposit structure, and exposure time ' , Energy , vol. 228 , 120494 . https://doi.org/10.1016/j.energy.2021.120494.  , 2021
 
?
11

Temperature gradient induced changes within superheater ash..:

Balint, Roland ; Engblom, Markus ; Niemi, Jonne...
Balint , R , Engblom , M , Niemi , J , Silva da Costa , D , Lindberg , D , Yrjas , P , Hupa , L & Hupa , M 2021 , ' Temperature gradient induced changes within superheater ash deposits high in chlorine ' , Energy , vol. 226 , 120439 . https://doi.org/10.1016/j.energy.2021.120439.  , 2021
 
?
12

Fuel and thermal NO formation during black liquor droplet p..:

Santochi Pereira da Silva, Paulo ; Engblom, Markus ; Brink, Anders.
Santochi Pereira da Silva , P , Engblom , M , Brink , A & Hupa , L 2020 , ' Fuel and thermal NO formation during black liquor droplet pyrolysis with envelope flame ' , Fuel , vol. 271 , 117512 , pp. – . https://doi.org/10.1016/j.fuel.2020.117512.  , 2020
 
?
13

Temperature-Gradient-Driven Aging Mechanisms in Alkali-Brom..:

Niemi, Jonne ; Balint, Roland ; Engblom, Markus..
Niemi , J , Balint , R , Engblom , M , Lehmusto , J & Lindberg , D 2019 , ' Temperature-Gradient-Driven Aging Mechanisms in Alkali-Bromide- and Sulfate-Containing Ash Deposits ' , Energy and Fuels , vol. 33 , no. 7 , pp. –5883 . https://doi.org/10.1021/acs.energyfuels.8b04199.  , 2019
 
1-15