I agree that this site is using cookies. You can find further informations
here
.
X
Login
Merkliste (
0
)
Home
About us
Home About us
Our history
Profile
Press & public relations
Friends
The library in figures
Exhibitions
Projects
Training, internships, careers
Films
Services & Information
Home Services & Information
Lending and interlibrary loans
Returns and renewals
Training and library tours
My Account
Library cards
New to the library?
Download Information
Opening hours
Learning spaces
PC, WLAN, copy, scan and print
Catalogs and collections
Home Catalogs and Collections
Rare books and manuscripts
Digital collections
Subject Areas
Our sites
Home Our sites
Central Library
Law Library (Juridicum)
BB Business and Economics (BB11)
BB Physics and Electrical Engineering
TB Engineering and Social Sciences
TB Economics and Nautical Sciences
TB Music
TB Art & Design
TB Bremerhaven
Contact the library
Home Contact the library
Staff Directory
Open access & publishing
Home Open access & publishing
Reference management: Citavi & RefWorks
Publishing documents
Open Access in Bremen
zur Desktop-Version
Toggle navigation
Merkliste
1 Ergebnisse
1
Entity Matching in the Wild: A Consistent and Versatile Fra..:
, In:
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data
,
Yan, Yan
;
Meyles, Stephen
;
Haghighi, Aria
. - p. 2287-2301 , 2020
Link:
https://dl.acm.org/doi/10.1145/3318464.3386143
RT T1
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data
: T1
Entity Matching in the Wild: A Consistent and Versatile Framework to Unify Data in Industrial Applications
UL https://suche.suub.uni-bremen.de/peid=acm-3386143&Exemplar=1&LAN=DE A1 Yan, Yan A1 Meyles, Stephen A1 Haghighi, Aria A1 Suciu, Dan PB ACM YR 2020 K1 cluster id assignment K1 conflict resolution in clustering K1 multi-level entity matching K1 Information systems K1 Data management systems K1 Information integration K1 Deduplication K1 Entity resolution K1 Information systems applications K1 Data mining K1 Clustering K1 Data cleaning K1 Computing methodologies K1 Machine learning K1 Learning paradigms K1 Supervised learning K1 Supervised learning by classification SP 2287 OP 2301 LK http://dx.doi.org/https://dl.acm.org/doi/10.1145/3318464.3386143 DO https://dl.acm.org/doi/10.1145/3318464.3386143 SF ELIB - SuUB Bremen
Export
RefWorks (nur Desktop-Version!)
Flow
(Zuerst in
Flow
einloggen, dann importieren)