I agree that this site is using cookies. You can find further informations
here
.
X
Login
Merkliste (
0
)
Home
About us
Home About us
Our history
Profile
Press & public relations
Friends
The library in figures
Exhibitions
Projects
Training, internships, careers
Films
Services & Information
Home Services & Information
Lending and interlibrary loans
Returns and renewals
Training and library tours
My Account
Library cards
New to the library?
Download Information
Opening hours
Learning spaces
PC, WLAN, copy, scan and print
Catalogs and collections
Home Catalogs and Collections
Rare books and manuscripts
Digital collections
Subject Areas
Our sites
Home Our sites
Central Library
Law Library (Juridicum)
BB Business and Economics (BB11)
BB Physics and Electrical Engineering
TB Engineering and Social Sciences
TB Economics and Nautical Sciences
TB Music
TB Art & Design
TB Bremerhaven
Contact the library
Home Contact the library
Staff Directory
Open access & publishing
Home Open access & publishing
Reference management: Citavi & RefWorks
Publishing documents
Open Access in Bremen
zur Desktop-Version
Toggle navigation
Merkliste
1 Ergebnisse
1
Federated and Transfer Learning Methods for the Classificat..:
Shafia Riaz
;
Ahmad Naeem
;
Hassaan Malik
..
https://www.mdpi.com/1424-8220/23/20/8457. , 2023
Link:
https://doi.org/10.3390/s23208457
RT Journal T1
Federated and Transfer Learning Methods for the Classification of Melanoma and Nonmelanoma Skin Cancers: A Prospective Study
UL https://suche.suub.uni-bremen.de/peid=base-ftdoajarticles:oai:doaj.org_article:2ef9eaef61b6465c95b6ee9c0849bcad&Exemplar=1&LAN=DE A1 Shafia Riaz A1 Ahmad Naeem A1 Hassaan Malik A1 Rizwan Ali Naqvi A1 Woong-Kee Loh PB MDPI AG YR 2023 K1 transfer learning K1 federated learning K1 melanoma K1 dermoscopy K1 skin cancer K1 Chemical technology K1 TP1-1185 JF https://www.mdpi.com/1424-8220/23/20/8457 LK http://dx.doi.org/https://doi.org/10.3390/s23208457 DO https://doi.org/10.3390/s23208457 SF ELIB - SuUB Bremen
Export
RefWorks (nur Desktop-Version!)
Flow
(Zuerst in
Flow
einloggen, dann importieren)