I agree that this site is using cookies. You can find further informations
here
.
X
Login
Merkliste (
0
)
Home
About us
Home About us
Our history
Profile
Press & public relations
Friends
The library in figures
Exhibitions
Projects
Training, internships, careers
Films
Services & Information
Home Services & Information
Lending and interlibrary loans
Returns and renewals
Training and library tours
My Account
Library cards
New to the library?
Download Information
Opening hours
Learning spaces
PC, WLAN, copy, scan and print
Catalogs and collections
Home Catalogs and Collections
Rare books and manuscripts
Digital collections
Subject Areas
Our sites
Home Our sites
Central Library
Law Library (Juridicum)
BB Business and Economics (BB11)
BB Physics and Electrical Engineering
TB Engineering and Social Sciences
TB Economics and Nautical Sciences
TB Music
TB Art & Design
TB Bremerhaven
Contact the library
Home Contact the library
Staff Directory
Open access & publishing
Home Open access & publishing
Reference management: Citavi & RefWorks
Publishing documents
Open Access in Bremen
zur Desktop-Version
Toggle navigation
Merkliste
1 Ergebnisse
1
Machine Learning Models for Prediction of Xenobiotic Chemic..:
Sudharsan Vijayaraghavan
;
Akshaya Lakshminarayanan
;
Naman Bhargava
...
https://figshare.com/articles/journal_contribution/Machine_Learning_Models_for_Prediction_of_Xenobiotic_Chemicals_with_High_Propensity_to_Transfer_into_Human_Milk/25351944. , 2024
Link:
https://doi.org/10.1021/acsomega.3c09392.s002
RT Journal T1
Machine Learning Models for Prediction of Xenobiotic Chemicals with High Propensity to Transfer into Human Milk
UL https://suche.suub.uni-bremen.de/peid=base-ftsmithonianinsp:oai:figshare.com:article_25351944&Exemplar=1&LAN=DE A1 Sudharsan Vijayaraghavan A1 Akshaya Lakshminarayanan A1 Naman Bhargava A1 Janani Ravichandran A1 R. P. Vivek-Ananth A1 Areejit Samal YR 2024 K1 Biochemistry K1 Cancer K1 Plant Biology K1 Environmental Sciences not elsewhere classified K1 Biological Sciences not elsewhere classified K1 Mathematical Sciences not elsewhere classified K1 Chemical Sciences not elsewhere classified K1 Information Systems not elsewhere classified K1 different performance metrics K1 support vector machine K1 study also highlights K1 impacting infant exposure K1 test data achieved K1 chemicals could achieve K1 2 </ sup K1 machine learning models K1 best regression models K1 machine learning K1 test data K1 study attests K1 infant health K1 >< sup K1 r </ K1 f </ K1 based models K1 xenobiotic chemicals K1 vital source K1 significant concern K1 plasma concentration K1 maternal plasma K1 maternal exposome K1 immense potential K1 human exposome K1 high propensity K1 essential nutrients K1 environmental chemicals K1 earlier literature K1 critical metric K1 based classifier K1 >- score K1 84 % K1 78 % K1 64 % K1 375 chemicals K1 33 % K1 31 % JF https://figshare.com/articles/journal_contribution/Machine_Learning_Models_for_Prediction_of_Xenobiotic_Chemicals_with_High_Propensity_to_Transfer_into_Human_Milk/25351944 LK http://dx.doi.org/https://doi.org/10.1021/acsomega.3c09392.s002 DO https://doi.org/10.1021/acsomega.3c09392.s002 SF ELIB - SuUB Bremen
Export
RefWorks (nur Desktop-Version!)
Flow
(Zuerst in
Flow
einloggen, dann importieren)