I agree that this site is using cookies. You can find further informations
here
.
X
Login
Merkliste (
0
)
Home
About us
Home About us
Our history
Profile
Press & public relations
Friends
The library in figures
Exhibitions
Projects
Training, internships, careers
Films
Services & Information
Home Services & Information
Lending and interlibrary loans
Returns and renewals
Training and library tours
My Account
Library cards
New to the library?
Download Information
Opening hours
Learning spaces
PC, WLAN, copy, scan and print
Catalogs and collections
Home Catalogs and Collections
Rare books and manuscripts
Digital collections
Subject Areas
Our sites
Home Our sites
Central Library
Law Library (Juridicum)
BB Business and Economics (BB11)
BB Physics and Electrical Engineering
TB Engineering and Social Sciences
TB Economics and Nautical Sciences
TB Music
TB Art & Design
TB Bremerhaven
Contact the library
Home Contact the library
Staff Directory
Open access & publishing
Home Open access & publishing
Reference management: Citavi & RefWorks
Publishing documents
Open Access in Bremen
zur Desktop-Version
Toggle navigation
Merkliste
1 Ergebnisse
1
A machine learning downscaling framework based on a physica..:
Zhang, Gangqiang
;
Xu, Tongren
;
Yin, Wenjie
...
Remote Sensing of Environment. 313 (2024) - p. 114359 , 2024
Link:
https://doi.org/10.1016/j.rse.2024.114359
RT Journal T1
A machine learning downscaling framework based on a physically constrained sliding window technique for improving resolution of global water storage anomaly
UL https://suche.suub.uni-bremen.de/peid=cr-10.1016_j.rse.2024.114359&Exemplar=1&LAN=DE A1 Zhang, Gangqiang A1 Xu, Tongren A1 Yin, Wenjie A1 Bateni, Sayed M. A1 Jun, Changhyun A1 Kim, Dongkyun A1 Liu, Shaomin A1 Xu, Ziwei A1 Ming, Wenting A1 Wang, Jiancheng PB Elsevier BV YR 2024 SN 0034-4257 JF Remote Sensing of Environment VO 313 SP 114359 LK http://dx.doi.org/https://doi.org/10.1016/j.rse.2024.114359 DO https://doi.org/10.1016/j.rse.2024.114359 SF ELIB - SuUB Bremen
Export
RefWorks (nur Desktop-Version!)
Flow
(Zuerst in
Flow
einloggen, dann importieren)