I agree that this site is using cookies. You can find further informations
here
.
X
Login
Merkliste (
0
)
Home
About us
Home About us
Our history
Profile
Press & public relations
Friends
The library in figures
Exhibitions
Projects
Training, internships, careers
Films
Services & Information
Home Services & Information
Lending and interlibrary loans
Returns and renewals
Training and library tours
My Account
Library cards
New to the library?
Download Information
Opening hours
Learning spaces
PC, WLAN, copy, scan and print
Catalogs and collections
Home Catalogs and Collections
Rare books and manuscripts
Digital collections
Subject Areas
Our sites
Home Our sites
Central Library
Law Library (Juridicum)
BB Business and Economics (BB11)
BB Physics and Electrical Engineering
TB Engineering and Social Sciences
TB Economics and Nautical Sciences
TB Music
TB Art & Design
TB Bremerhaven
Contact the library
Home Contact the library
Staff Directory
Open access & publishing
Home Open access & publishing
Reference management: Citavi & RefWorks
Publishing documents
Open Access in Bremen
zur Desktop-Version
Toggle navigation
Merkliste
1 Ergebnisse
1
Extending approximate Bayesian computation with supervised ..:
Collin, François‐David
;
Durif, Ghislain
;
Raynal, Louis
...
Molecular Ecology Resources. 21 (2021) 8 - p. 2598-2613 , 2021
Link:
https://doi.org/10.1111/1755-0998.13413
RT Journal T1
Extending approximate Bayesian computation with supervised machine learning to infer demographic history from genetic polymorphisms using DIYABC Random Forest
UL https://suche.suub.uni-bremen.de/peid=cr-10.1111_1755-0998.13413&Exemplar=1&LAN=DE A1 Collin, François‐David A1 Durif, Ghislain A1 Raynal, Louis A1 Lombaert, Eric A1 Gautier, Mathieu A1 Vitalis, Renaud A1 Marin, Jean‐Michel A1 Estoup, Arnaud PB Wiley YR 2021 SN 1755-098X SN 1755-0998 JF Molecular Ecology Resources VO 21 IS 8 SP 2598 OP 2613 LK http://dx.doi.org/https://doi.org/10.1111/1755-0998.13413 DO https://doi.org/10.1111/1755-0998.13413 SF ELIB - SuUB Bremen
Export
RefWorks (nur Desktop-Version!)
Flow
(Zuerst in
Flow
einloggen, dann importieren)