I agree that this site is using cookies. You can find further informations
here
.
X
Login
Merkliste (
0
)
Home
About us
Home About us
Our history
Profile
Press & public relations
Friends
The library in figures
Exhibitions
Projects
Training, internships, careers
Films
Services & Information
Home Services & Information
Lending and interlibrary loans
Returns and renewals
Training and library tours
My Account
Library cards
New to the library?
Download Information
Opening hours
Learning spaces
PC, WLAN, copy, scan and print
Catalogs and collections
Home Catalogs and Collections
Rare books and manuscripts
Digital collections
Subject Areas
Our sites
Home Our sites
Central Library
Law Library (Juridicum)
BB Business and Economics (BB11)
BB Physics and Electrical Engineering
TB Engineering and Social Sciences
TB Economics and Nautical Sciences
TB Music
TB Art & Design
TB Bremerhaven
Contact the library
Home Contact the library
Staff Directory
Open access & publishing
Home Open access & publishing
Reference management: Citavi & RefWorks
Publishing documents
Open Access in Bremen
zur Desktop-Version
Toggle navigation
Merkliste
1 Ergebnisse
1
The Machine Learning Model for Predicting Inadequate Bowel ..:
Gu, Feng
;
Xu, Jianing
;
Du, Lina
...
Clinical and Translational Gastroenterology. 15 (2024) 5 - p. e00694 , 2024
Link:
https://doi.org/10.14309/ctg.0000000000000694
RT Journal T1
The Machine Learning Model for Predicting Inadequate Bowel Preparation Before Colonoscopy: A Multicenter Prospective Study
UL https://suche.suub.uni-bremen.de/peid=cr-10.14309_ctg.0000000000000694&Exemplar=1&LAN=DE A1 Gu, Feng A1 Xu, Jianing A1 Du, Lina A1 Liang, Hejun A1 Zhu, Jingyi A1 Lin, Lanhui A1 Ma, Lei A1 He, Boyuan A1 Wei, Xinxin A1 Zhai, Huihong PB Ovid Technologies (Wolters Kluwer Health) YR 2024 SN 2155-384X JF Clinical and Translational Gastroenterology VO 15 IS 5 SP e00694 LK http://dx.doi.org/https://doi.org/10.14309/ctg.0000000000000694 DO https://doi.org/10.14309/ctg.0000000000000694 SF ELIB - SuUB Bremen
Export
RefWorks (nur Desktop-Version!)
Flow
(Zuerst in
Flow
einloggen, dann importieren)