I agree that this site is using cookies. You can find further informations
here
.
X
Login
Merkliste (
0
)
Home
About us
Home About us
Our history
Profile
Press & public relations
Friends
The library in figures
Exhibitions
Projects
Training, internships, careers
Films
Services & Information
Home Services & Information
Lending and interlibrary loans
Returns and renewals
Training and library tours
My Account
Library cards
New to the library?
Download Information
Opening hours
Learning spaces
PC, WLAN, copy, scan and print
Catalogs and collections
Home Catalogs and Collections
Rare books and manuscripts
Digital collections
Subject Areas
Our sites
Home Our sites
Central Library
Law Library (Juridicum)
BB Business and Economics (BB11)
BB Physics and Electrical Engineering
TB Engineering and Social Sciences
TB Economics and Nautical Sciences
TB Music
TB Art & Design
TB Bremerhaven
Contact the library
Home Contact the library
Staff Directory
Open access & publishing
Home Open access & publishing
Reference management: Citavi & RefWorks
Publishing documents
Open Access in Bremen
zur Desktop-Version
Toggle navigation
Merkliste
1 Ergebnisse
1
Adaptive sparseness for correntropy-based robust regression..:
, In:
2023 International Joint Conference on Neural Networks (IJCNN)
,
Li, Yuanhao
;
Chen, Badong
;
Yamashita, Okito
.. - p. 1-8 , 2023
Link:
https://doi.org/10.1109/IJCNN54540.2023.10191293
RT T1
2023 International Joint Conference on Neural Networks (IJCNN)
: T1
Adaptive sparseness for correntropy-based robust regression via automatic relevance determination
UL https://suche.suub.uni-bremen.de/peid=ieee-10191293&Exemplar=1&LAN=DE A1 Li, Yuanhao A1 Chen, Badong A1 Yamashita, Okito A1 Yoshimura, Natsue A1 Koike, Yasuharu YR 2023 SN 2161-4407 K1 Machine learning algorithms K1 Neural networks K1 Estimation K1 Machine learning K1 Feature extraction K1 Robustness K1 Bayes methods SP 1 OP 8 LK http://dx.doi.org/https://doi.org/10.1109/IJCNN54540.2023.10191293 DO https://doi.org/10.1109/IJCNN54540.2023.10191293 SF ELIB - SuUB Bremen
Export
RefWorks (nur Desktop-Version!)
Flow
(Zuerst in
Flow
einloggen, dann importieren)