I agree that this site is using cookies. You can find further informations
here
.
X
Login
Merkliste (
0
)
Home
About us
Home About us
Our history
Profile
Press & public relations
Friends
The library in figures
Exhibitions
Projects
Training, internships, careers
Films
Services & Information
Home Services & Information
Lending and interlibrary loans
Returns and renewals
Training and library tours
My Account
Library cards
New to the library?
Download Information
Opening hours
Learning spaces
PC, WLAN, copy, scan and print
Catalogs and collections
Home Catalogs and Collections
Rare books and manuscripts
Digital collections
Subject Areas
Our sites
Home Our sites
Central Library
Law Library (Juridicum)
BB Business and Economics (BB11)
BB Physics and Electrical Engineering
TB Engineering and Social Sciences
TB Economics and Nautical Sciences
TB Music
TB Art & Design
TB Bremerhaven
Contact the library
Home Contact the library
Staff Directory
Open access & publishing
Home Open access & publishing
Reference management: Citavi & RefWorks
Publishing documents
Open Access in Bremen
zur Desktop-Version
Toggle navigation
Merkliste
1 Ergebnisse
1
Generalized Relation Modeling for Transformer Tracking:
, In:
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Gao, Shenyuan
;
Zhou, Chunluan
;
Zhang, Jun
- p. 18686-18695 , 2023
Link:
https://doi.org/10.1109/CVPR52729.2023.01792
RT T1
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
: T1
Generalized Relation Modeling for Transformer Tracking
UL https://suche.suub.uni-bremen.de/peid=ieee-10203732&Exemplar=1&LAN=DE A1 Gao, Shenyuan A1 Zhou, Chunluan A1 Zhang, Jun YR 2023 SN 2575-7075 K1 Adaptation models K1 Computer vision K1 Target tracking K1 Computational modeling K1 Pipelines K1 Performance gain K1 Transformers K1 Video: Low-level analysis K1 motion K1 and tracking SP 18686 OP 18695 LK http://dx.doi.org/https://doi.org/10.1109/CVPR52729.2023.01792 DO https://doi.org/10.1109/CVPR52729.2023.01792 SF ELIB - SuUB Bremen
Export
RefWorks (nur Desktop-Version!)
Flow
(Zuerst in
Flow
einloggen, dann importieren)