I agree that this site is using cookies. You can find further informations
here
.
X
Login
Merkliste (
0
)
Home
About us
Home About us
Our history
Profile
Press & public relations
Friends
The library in figures
Exhibitions
Projects
Training, internships, careers
Films
Services & Information
Home Services & Information
Lending and interlibrary loans
Returns and renewals
Training and library tours
My Account
Library cards
New to the library?
Download Information
Opening hours
Learning spaces
PC, WLAN, copy, scan and print
Catalogs and collections
Home Catalogs and Collections
Rare books and manuscripts
Digital collections
Subject Areas
Our sites
Home Our sites
Central Library
Law Library (Juridicum)
BB Business and Economics (BB11)
BB Physics and Electrical Engineering
TB Engineering and Social Sciences
TB Economics and Nautical Sciences
TB Music
TB Art & Design
TB Bremerhaven
Contact the library
Home Contact the library
Staff Directory
Open access & publishing
Home Open access & publishing
Reference management: Citavi & RefWorks
Publishing documents
Open Access in Bremen
zur Desktop-Version
Toggle navigation
Merkliste
1 Ergebnisse
1
CODA-Prompt: COntinual Decomposed Attention-Based Prompting..:
, In:
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Smith, James Seale
;
Karlinsky, Leonid
;
Gutta, Vyshnavi
... - p. 11909-11919 , 2023
Link:
https://doi.org/10.1109/CVPR52729.2023.01146
RT T1
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
: T1
CODA-Prompt: COntinual Decomposed Attention-Based Prompting for Rehearsal-Free Continual Learning
UL https://suche.suub.uni-bremen.de/peid=ieee-10204890&Exemplar=1&LAN=DE A1 Smith, James Seale A1 Karlinsky, Leonid A1 Gutta, Vyshnavi A1 Cascante-Bonilla, Paola A1 Kim, Donghyun A1 Arbelle, Assaf A1 Panda, Rameswar A1 Feris, Rogerio A1 Kira, Zsolt YR 2023 SN 2575-7075 K1 Resistance K1 Computer vision K1 Semantics K1 Memory management K1 Training data K1 Benchmark testing K1 Transformers K1 Transfer K1 meta K1 low-shot K1 continual K1 or long-tail learning SP 11909 OP 11919 LK http://dx.doi.org/https://doi.org/10.1109/CVPR52729.2023.01146 DO https://doi.org/10.1109/CVPR52729.2023.01146 SF ELIB - SuUB Bremen
Export
RefWorks (nur Desktop-Version!)
Flow
(Zuerst in
Flow
einloggen, dann importieren)