I agree that this site is using cookies. You can find further informations
here
.
X
Login
Merkliste (
0
)
Home
About us
Home About us
Our history
Profile
Press & public relations
Friends
The library in figures
Exhibitions
Projects
Training, internships, careers
Films
Services & Information
Home Services & Information
Lending and interlibrary loans
Returns and renewals
Training and library tours
My Account
Library cards
New to the library?
Download Information
Opening hours
Learning spaces
PC, WLAN, copy, scan and print
Catalogs and collections
Home Catalogs and Collections
Rare books and manuscripts
Digital collections
Subject Areas
Our sites
Home Our sites
Central Library
Law Library (Juridicum)
BB Business and Economics (BB11)
BB Physics and Electrical Engineering
TB Engineering and Social Sciences
TB Economics and Nautical Sciences
TB Music
TB Art & Design
TB Bremerhaven
Contact the library
Home Contact the library
Staff Directory
Open access & publishing
Home Open access & publishing
Reference management: Citavi & RefWorks
Publishing documents
Open Access in Bremen
zur Desktop-Version
Toggle navigation
Merkliste
1 Ergebnisse
1
Multitask learning approach for lung nodule segmentation an..:
, In:
2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
,
Fernandes, Luis
;
Oliveira, Helder P.
- p. 3874-3880 , 2023
Link:
https://doi.org/10.1109/BIBM58861.2023.10385868
RT T1
2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
: T1
Multitask learning approach for lung nodule segmentation and classification in CT images
UL https://suche.suub.uni-bremen.de/peid=ieee-10385868&Exemplar=1&LAN=DE A1 Fernandes, Luis A1 Oliveira, Helder P. YR 2023 SN 2156-1133 K1 Deep learning K1 Image segmentation K1 Hospitals K1 Computational modeling K1 Computed tomography K1 Lung K1 Lung cancer K1 multitasking K1 segmentation K1 classification K1 ct images K1 radiomics SP 3874 OP 3880 LK http://dx.doi.org/https://doi.org/10.1109/BIBM58861.2023.10385868 DO https://doi.org/10.1109/BIBM58861.2023.10385868 SF ELIB - SuUB Bremen
Export
RefWorks (nur Desktop-Version!)
Flow
(Zuerst in
Flow
einloggen, dann importieren)