I agree that this site is using cookies. You can find further informations
here
.
X
Login
Merkliste (
0
)
Home
About us
Home About us
Our history
Profile
Press & public relations
Friends
The library in figures
Exhibitions
Projects
Training, internships, careers
Films
Services & Information
Home Services & Information
Lending and interlibrary loans
Returns and renewals
Training and library tours
My Account
Library cards
New to the library?
Download Information
Opening hours
Learning spaces
PC, WLAN, copy, scan and print
Catalogs and collections
Home Catalogs and Collections
Rare books and manuscripts
Digital collections
Subject Areas
Our sites
Home Our sites
Central Library
Law Library (Juridicum)
BB Business and Economics (BB11)
BB Physics and Electrical Engineering
TB Engineering and Social Sciences
TB Economics and Nautical Sciences
TB Music
TB Art & Design
TB Bremerhaven
Contact the library
Home Contact the library
Staff Directory
Open access & publishing
Home Open access & publishing
Reference management: Citavi & RefWorks
Publishing documents
Open Access in Bremen
zur Desktop-Version
Toggle navigation
Merkliste
1 Ergebnisse
1
Infrared Video Data Cleaning Based on LightWeight CNN-LSTM:
, In:
2023 China Automation Congress (CAC)
,
Liu, Fang
;
Li, Shiwei
;
Chen, Congang
.. - p. 8981-8986 , 2023
Link:
https://doi.org/10.1109/CAC59555.2023.10450247
RT T1
2023 China Automation Congress (CAC)
: T1
Infrared Video Data Cleaning Based on LightWeight CNN-LSTM
UL https://suche.suub.uni-bremen.de/peid=ieee-10450247&Exemplar=1&LAN=DE A1 Liu, Fang A1 Li, Shiwei A1 Chen, Congang A1 Hu, Yutong A1 Gong, Hua YR 2023 SN 2688-0938 K1 Correlation K1 Feature extraction K1 Cleaning K1 Data models K1 Spatiotemporal phenomena K1 Convolutional neural networks K1 Data mining K1 data cleaning K1 infrared video data K1 CNN K1 ResNet34 K1 LSTM K1 network lightweight SP 8981 OP 8986 LK http://dx.doi.org/https://doi.org/10.1109/CAC59555.2023.10450247 DO https://doi.org/10.1109/CAC59555.2023.10450247 SF ELIB - SuUB Bremen
Export
RefWorks (nur Desktop-Version!)
Flow
(Zuerst in
Flow
einloggen, dann importieren)