I agree that this site is using cookies. You can find further informations
here
.
X
Login
Merkliste (
0
)
Home
About us
Home About us
Our history
Profile
Press & public relations
Friends
The library in figures
Exhibitions
Projects
Training, internships, careers
Films
Services & Information
Home Services & Information
Lending and interlibrary loans
Returns and renewals
Training and library tours
My Account
Library cards
New to the library?
Download Information
Opening hours
Learning spaces
PC, WLAN, copy, scan and print
Catalogs and collections
Home Catalogs and Collections
Rare books and manuscripts
Digital collections
Subject Areas
Our sites
Home Our sites
Central Library
Law Library (Juridicum)
BB Business and Economics (BB11)
BB Physics and Electrical Engineering
TB Engineering and Social Sciences
TB Economics and Nautical Sciences
TB Music
TB Art & Design
TB Bremerhaven
Contact the library
Home Contact the library
Staff Directory
Open access & publishing
Home Open access & publishing
Reference management: Citavi & RefWorks
Publishing documents
Open Access in Bremen
zur Desktop-Version
Toggle navigation
Merkliste
1 Ergebnisse
1
Employing Machine Learning for the Prediction of Antimicrob..:
, In:
SoutheastCon 2024
,
Kim, Donghoon
;
Jun, Se-ran
;
Hwang, Doosung
- p. 1519-1524 , 2024
Link:
https://doi.org/10.1109/SoutheastCon52093.2024.1050005
RT T1
SoutheastCon 2024
: T1
Employing Machine Learning for the Prediction of Antimicrobial Resistance (AMR) Phenotypes
UL https://suche.suub.uni-bremen.de/peid=ieee-10500051&Exemplar=1&LAN=DE A1 Kim, Donghoon A1 Jun, Se-ran A1 Hwang, Doosung YR 2024 SN 1558-058X K1 Antibiotics K1 Biological system modeling K1 Machine learning K1 Pressing K1 Predictive models K1 Feature extraction K1 Prediction algorithms K1 Antimicrobial resistance K1 phenotypes K1 machine learning K1 features K1 k-mers SP 1519 OP 1524 LK http://dx.doi.org/https://doi.org/10.1109/SoutheastCon52093.2024.10500051 DO https://doi.org/10.1109/SoutheastCon52093.2024.10500051 SF ELIB - SuUB Bremen
Export
RefWorks (nur Desktop-Version!)
Flow
(Zuerst in
Flow
einloggen, dann importieren)